724 research outputs found

    Double-distribution-function discrete Boltzmann model for combustion

    Full text link
    A 2-dimensional discrete Boltzmann model for combustion is presented. Mathematically, the model is composed of two coupled discrete Boltzmann equations for two species and a phenomenological equation for chemical reaction process. Physically, the model is equivalent to a reactive Navier-Stokes model supplemented by a coarse-grained model for the thermodynamic nonequilibrium behaviours. This model adopts 16 discrete velocities. It works for both subsonic and supersonic combustion phenomena with flexible specific heat ratio. To discuss the physical accuracy of the coarse-grained model for nonequilibrium behaviours, three other discrete velocity models are used for comparisons. Numerical results are compared with analytical solutions based on both the first-order and second-order truncations of the distribution function. It is confirmed that the physical accuracy increases with the increasing moment relations needed by nonequlibrium manifestations. Furthermore, compared with the single distribution function model, this model can simulate more details of combustion.Comment: Accepted for publication in Combustion and Flam

    Multiple-Relaxation-Time Lattice Boltzmann Approach to Compressible Flows with Flexible Specific-Heat Ratio and Prandtl Number

    Full text link
    A new multiple-relaxation-time lattice Boltzmann scheme for compressible flows with arbitrary specific heat ratio and Prandtl number is presented. In the new scheme, which is based on a two-dimensional 16-discrete-velocity model, the moment space and the corresponding transformation matrix are constructed according to the seven-moment relations associated with the local equilibrium distribution function. In the continuum limit, the model recovers the compressible Navier-Stokes equations with flexible specific-heat ratio and Prandtl number. Numerical experiments show that compressible flows with strong shocks can be simulated by the present model up to Mach numbers Ma∼5Ma \sim 5.Comment: Accepted for publication in EP

    Prandtl number effects in MRT Lattice Boltzmann models for shocked and unshocked compressible fluids

    Get PDF
    For compressible fluids under shock wave reaction, we have proposed two Multiple-Relaxation-Time (MRT) Lattice Boltzmann (LB) models [F. Chen, et al, EPL \textbf{90} (2010) 54003; Phys. Lett. A \textbf{375} (2011) 2129.]. In this paper, we construct a new MRT Lattice Boltzmann model which is not only for the shocked compressible fluids, but also for the unshocked compressible fluids. To make the model work for unshocked compressible fluids, a key step is to modify the collision operators of energy flux so that the viscous coefficient in momentum equation is consistent with that in energy equation even in the unshocked system. The unnecessity of the modification for systems under strong shock is analyzed. The model is validated by some well-known benchmark tests, including (i) thermal Couette flow, (ii) Riemann problem, (iii) Richtmyer-Meshkov instability. The first system is unshocked and the latter two are shocked. In all the three systems, the Prandtl numbers effects are checked. Satisfying agreements are obtained between new model results and analytical ones or other numerical results.Comment: 17 pages, 8 figure

    Multiple-relaxation-time lattice Boltzmann kinetic model for combustion

    Full text link
    To probe both the Hydrodynamic Non-Equilibrium (HNE) and Thermodynamic Non-Equilibrium (TNE) in the combustion process, a two-dimensional Multiple-Relaxation-Time (MRT) version of Lattice Boltzmann Kinetic Model(LBKM) for combustion phenomena is presented. The chemical energy released in the progress of combustion is dynamically coupled into the system by adding a chemical term to the LB kinetic equation. Beside describing the evolutions of the conserved quantities, the density, momentum and energy, which are what the Navier-Stokes model describes, the MRT-LBKM presents also a coarse-grained description on the evolutions of some non-conserved quantities. The current model works for both subsonic and supersonic flows with or without chemical reaction. In this model both the specific-heat ratio and the Prandtl number are flexible, the TNE effects are naturally presented in each simulation step. The model is verified and validated via well-known benchmark tests. As an initial application, various non-equilibrium behaviours, including the complex interplays between various HNEs, between various TNEs and between the HNE and TNE, around the detonation wave in the unsteady and steady one-dimensional detonation processes are preliminarily probed. It is found that the system viscosity (or heat conductivity) decreases the local TNE, but increase the global TNE around the detonation wave, that even locally, the system viscosity (or heat conductivity) results in two kinds of competing trends, to increase and to decrease the TNE effects. The physical reason is that the viscosity (or heat conductivity) takes part in both the thermodynamic and hydrodynamic responses.Comment: 32 pages, 11 figure
    • …
    corecore